ReadMe File The FIR Filter Design Program December 2015

FIR Filter Design ReadMe

James K Beard, Ph.D.

The FIR Filter Design program can be found at http://jameskbeard.com/jameskbeard/Files.htmI#FIRDSN

1

Table of Contents

SUMIMIAIY i e e e e e e e e e e e e e e e e e e e s e e e e e e e eeeaeeeeasasasasasasssssasasssasasaaaaeaeaeaeaeeeeeeaeeeeens 3
1.1 The REAAME FlE ...t et e s e e sneesnee s 3
1.2 What This Program Adds to Classical Capabilitiescccccceiviceiiieiee e, 3
1.3 HOW t0 USE the PrOSIami......cecii i iciiieiee ettt e e e e ettt e e e e e e e st e e e e e e e s snaraaeeeeeessnasnseessrasaaaaaean 4
14 TYPES Of FIltErs DESIGNEMvviieiiiiie ettt ettt e et e e st e e e s ab e e e esataeeessraeseeeessseeeaan 4
1.5 Program OUTPULS....ciiiiiiiiiiiiiiiiititietetete ettt et bbb e reee et e e e et eeee et eeeeteeeseteseseseseseseeeeeeresssneserenenenens 5

1.5.1 D1 o] 1212 RSP 5

1.5.2 TSI Yo o B DT 1] o] £ 1 UURUPUURRR 5
1.6 History of the Technology and of This Programccooveciiieii e e e 6
1.7 =LY Ty Lo Y i o 113 o1 YRR 6

ol o I 2= £ =] Vol Y-SR 6
21 BOOKS ..ottt h e bt h e s bt e s a et sttt et e et e nbeesneeeneeenreenneea 6
2.2 L= [o 1=] T SO PP PP PPPPPPPPPPPPPPPPPRE 7

2.2.1 The Computational Engine, its Limitations, and its Parameters........ccccccceeveeccvieeeeeeececcnnns 7

2.2.2 The Remez Inequality and Approximation Algorithm.........ccccceeeieiciiiiie e, 7

2.2.3 Decimation Filters and Digital Quadrature Demodulation.........ccccccoviieiiieiecciiieeee e, 7

2.2.4 Spectral Windows for Use With an FFTuuiiiiiiiie ettt eee e e 7
2.3 Current Versions of the Programoccueii ittt e e e rtae e e e 8

(U1 Y = 4 a Tl o oY= =Y o' TSRS 9
3.1 Installing and Starting the Program ... e e e e e ee e e s e e e e 9
3.2 Simplest use: Low Pass or High Pass Filter........ccoiciiiiieii ittt e e e e e nane e 10
33 Decimation and INterpolation FIlLEIS ...ttt e e e e e errrae e e 15
3.4 Multiple Bandpass and the Classical INPULS........ccuviiiiiiiiiii i 17

3.4.1 Multiple Band Bandpass FIltEIS.......eiiiiiiiiiiiiiie ettt et e e e e e 17

34.2 Differentiator and Hilbert Transformer ..o 18

Page 1 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

3.5 O < T o [T [o [N =[] SRR 19
3.6 FIR Filter in a Digital Quadrature Demodulator......cccccoooeiciiiieeii e 21
3.7 (@ LU o U A 1 1TSS SPRR 26

I [=Tol o[ot |l D= - 1| PP UPPPPPPPNt 27
4.1 The FOUr TYPES OF FIR FIlt@IS .cciiuiiiie ittt ettt e e e e arae e e e s e saneee s 27
41.1 Type 1: Symmetrical Impulse Response, Odd Orderccccveeeeiiveeesiiieeesieeeesiee e 28
4.1.2 Type 2: Symmetrical Impulse Response, EVEN Orderccccveeeeiiieeeciiiieeescieee e e, 28
4.1.3 Type 3: Anti-Symmetrical Impulse Response, Odd Order......cccccevvveviiiveeeeee i 28
4.1.4 Type 4: Anti-Symmetrical Impulse Response, Even Order.......ccccccoeecvvveeeeeeeeccciiieeeeee e 29

4.2 Properties and Limitations of the Four Types of Frequency Responses...........ccccceeeeeeeeevrvvnnnnnn. 29
4.3 Ripple, Filter Deviation, and Error Weighting in the Stopbandccccccviviiiiiiien e, 34

D THE SOUICE COUE ..uiiiiiiiiiie ettt ettt sttt e st e s te e s be e s ate e sabeesabeesabeessabeesabeesabaesnbteesabaesenataesnseeenaseanns 36

Table of Figures

Figure 1. Opening Dialogue; Appears Only ONCE PEr RUNcccciiieiiciiieeiciiee e ccieee e eitee e esteeeeseiteeeesveeee s s e 9
Figure 2. New Run Menu Item; Use for New Design Once Program is Started........cccccceevvveeeicieeeeccnnnennn. 10
Figure 3. Filter Type Selection DIalOgUE.........cuuiiiii it e e e e e re e e e e e et s enaaaeeeeaeeean 10
Figure 4. Dialogue for Selection of Free Parameter.....cccuiiieiciieiieiieie e ecee e erree s e s e e saaaee s 11
Figure 5. Normal or Decimation Selection DialOgUE........cc.uueiiiiiiiiieciiie et sve e 11
Figure 6. Specification Dialogue for LOW Pass FilteIS.......cccuuiiiiiiiiiiieciiee ettt ettt e e e 12
Figure 7. Prompt tO APProve @ DESISNccciiiiiiiiiiiiiiiiiiiiiiieieieeeteeeteeeeeeee e ettt e eeeeeeeeeeeeeeeeeeeeeeeeeeeeessnssesssenenens 12
Figure 8. Classical McClellan and Parks FIR Filter Design OULPULccevvveeeiiciieee e 13
Figure 9. Rounding to Word Length DialOgUeE........ccueuiiiiiiiiie ettt eeerree e e e e e vtre e e e e aeeeaa e 14

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 17.
Figure 16.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

Low Pass FIR Filter FreqUeNCY RESPONSE....ccicuiieiiiciiieeeciieeeseiree e ettt e e etreeessataeesssraeeessbaeeeseeeans 14
Decimation and Interpolation Specification Dialoguecccveeevciiiiiciiie e, 15
FIR Filter Considerations in Decimating by a Factor of K........ccccceeiriiciiiieie e 16
Dialogue for ClassiCal INPULSiiiiiiiii ittt e sre e e s e e sbte e e s sbaeaeeesenaeeeesans 17
Band INPUL DIGlOGUE.......uiiieiciiiie ettt ettt e e s tte e e e et e e e snta e e e sbtaeesen sntaeeesnteeananns 17
o[V] PTG = « T PRSP 19
Equalizer Input File Selection DIalogUE.......eeiiei ittt eeerrree e e e e e e e e e eaans 20
Equalizer.xlsx Tab 2 of, AlSO EQUAlIZEI.CSVuviiieiiiiie ettt et 20
Equalizer EXample FreqUENCY RESPONSEuiiiiiieeeeiiiieeee e e e ettt e e e e e eeeiareeeeeeeeesnbeaaeeeeeseenassannes 21
Digital Quadrature Demodulator Block Diagramcccuveiiicieeiiiiiieeeciieeeeciieeessieeeessvieee e 22
Aliasing Diagram For Undersampled Real Dataccceevveciiiieieii e evteee e 23
Frequency-Shifted Signal Before Clean-Upcccccuiiiiiiiiieccciiiieeee e eecteee e 24
Implementation Configuration of Digital Quadrature Demodulator..........ccccoceeevvcveeeiiciieeennnns 25

Page 2 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

Figure 23. Type 1: High Pass, Odd Number of Weightscccoiiiiiiiiiicee e 31
Figure 24. Type 2: High Pass with Even Number of Weightsccccvirieciiiiiccie e 31
Figure 25. Type 3: Differentiator with Odd Number of Weights (Not Recommended)ccccceevnnneenn. 32
Figure 26. Type 4: Differentiator with Even Number of Weightsccccveeiiiiiiiiiiie e 32

Figure 27. Type 4: Hilbert Transformer with Even Number of Weights, Transition at Zero Frequency...33

List of Tables
Table 1. REVISION HiSTOIY ..uiiiiiiiiiiiiiieiee e e e e e et e e e e e e e sabt e e e e e e ssabataeee eeeeeeeesnnsnsenneeeesans 6
Table 2. FIR FILEr DESIGN FIlES.......uuiiiiieeeee ettt ettt e ettt e e e e e e e st e e e e e e e e s abata e e e e seeeeeeeesnsnraeaeaaanans 9
Table 3. Decimation Filter Requirements for Digital Quadrature Demodulatorccccccvvveeeiciieeincnnennnn. 25
LI L1 LT S @ U o 10 1 1SR ETR 26
Table 5. Frequency Responses Shifted by Nyquist FreQUENCY......ccocciiiiiiiiiiee et 30
Table 6. Limitations and Solutions for Each Filter TYPec.uueiieciiiiieiee e 33

The FIR Filter Design Program

1 Summary

1.1 The ReadMe File

This ReadMe file provides a background and instructions for use of the programs used to provide the
capability to design finite impulse response (FIR) or convolution digital filters for uniformly sampled
data. The how-to sections include instructions on use of each of the program’s capabilities and a
thumbnail on how to use a FIR filter in a digital quadrature demodulator that can be implemented as a
multiplexer-filter. The PDF format is used instead of plain text to allow the use of live links, figures, and
equations.

1.2 What This Program Adds to Classical Capabilities

The FIR filter engine published by Parks, McClellan, and Rabiner in the IEEE and a landmark book on
digital signal processing (see Section 2 for references) provides a method for designing FIR filters, and,
with the references, the information needed to use the engine effectively. | took upon myself as a
personal project to address speed and ease of use for real-world application in the mid 1980’s, in
particular allowing input of passband and stopband ripple in decibels in place of a linear weighting
between them, and a new automated design process that, instead of a trial-and-error process, leaves
one filter design parameter free, finding the free filter parameter through the secant method.
Restructuring the program for Fortran 95+ and improving the user interface became a new project in the
2000’s, and exploiting the legacy engine’s capability to design filters with arbitrarily shaped passbands

Page 3 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

was another. This version now also provides a GUI for the user, and all outputs needed to apply the FIR
filter are available. A summary of these new capabilities:

e You control the program though GUI pop-up dialogues; no command-line interface,

e You input passband ripple and stopband attenuation requirements in dB,

e For low-pass or high-pass:

O You can let the filter find the number of weights needed to meet requirements,

0 You can let the filter find passband width, stopband attenuation, or transition
bandwidth if the number of weights is fixed,

0 Decimation and interpolation filters are explicitly supported,

e You can round the filter weights to a specified binary word length, compare the filter frequency
response using the rounded weights to that using the un-rounded weights, and produce an
output file that provides the rounded weights in decimal and hexadecimal with the scaling
factors needed to preserve scaling in implementation,

e You get report-ready frequency response plots in both dB and linear scaling as well as in a CSV
file for plotting dB scale frequency response in your own program or spreadsheet,

e The program uses double precision so that large filters can be designed with accurate filter
weights, and

e The legacy multiple-band user input is still available as an option, as are differentiators and
Hilbert Transformers.

1.3 How to Use the Program

Most FIR filters are low-pass filters with known requirements. For this type of design, you probably
don’t need to read this ReadMe file; just go ahead and use the program, and read the pop-up dialogues
carefully the first few times you use it.

If you have questions or run into unexpected issues, or need to design high-pass filters, multi-band
filters, differentiators, Hilbert transformers, or user-defined passband shape filters (equalizers), or you
are designing your first digital quadrature demodulator, you should read the relevant parts of this
ReadMe file before you begin.

Sophisticated applications of FIR filters include decimation, interpolation, and digital quadrature
demodulators implemented as a decimation filter combined with a multiplexer. These are treated in
how-to sections under Section 3.

1.4 Types of Filters Designed
The program is capable of designing

e Low-pass, and high-pass,

e Multiband bandpass filers,

e Differentiators,

o Hilbert transform filters, and

e User-specified frequency response filters.

Page 4 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

We include an example of a user-specified audio equalizer for a speaker system or hearing aid. The low-
pass and high-pass capability is extended to designs specifically parameterized for decimation and
interpolation filters, where, on downsampling, the stopbands alias into the passband, and the “don’t-
care” or transition regions are positioned symmetrically about the folding frequencies. All user inputs
are via GUI pop-up dialogs.

Linear phase FIR filters cannot produce some types of designs such as high-pass filters with an even
number of weights, and the reasons for this are not immediately obvious. Section 3 below is a “How-
To” guide that deals with these restrictions; section 4.2 details the theory behind the restrictions.

Use of the FIR filter design program for interpolation and decimation is straightforward, and is explained
in Section 3.3. Other applications are a digital quadrature demodulator, in which a real signal is sampled
at I.F. and the operation of multiplying by a complex exponential and low-pass filtering the result to
provide a complex signal at baseband, and design of general frequency response FIR filters. A hearing
aid equalizer is provided as an example of a general frequency response filter along with the program
files, and is explained in Section 3.

1.5 Program Outputs

1.5.1 Displays

The classical FIR filter ASCII output is displayed along with a “go-no-go” prompt. The user can observe
the number of weights, the passband and stopband attenuation, and other design details before
allowing the filter weights and frequency responses to be computed, or the design can be disapproved
and the program will loop back for a new design.

The frequency response of the final filter, with and without truncation of the weights to a user-specified
word length, is displayed as a full-screen plot as the run ends.

1.5.2 Files and Displays
Output files are all in the format yyyymmdd_hhmm_<title>.<ext> and include

o Atextlog file with a file name beginning with the date and time in the format that includes the
FIR filter design output in the classical format used in the original FORTRAN programs,

e The filter frequency response in decibels versus frequency in a CSV file formatted for quick plots
using a spreadsheet, and

e The filter weights normalized and rounded to a user-specified number of bits in decimal and
hexadecimal notation in a CSV file.

e The legacy text output file provides a look at the filter parameters as background for a “go-
ahead” prompt to complete the design.

e All frequency response plots with dB and linear scales are stored as PNG files.

The log file is echoed in a text screen that is the main window for the application.

Page 5 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

1.6 History of the Technology and of This Program

The original FIR theory and technology development was done in partial fulfillment of Ph.D.
requirements by J. H. McClellan and published in the IEEE Transactions on Audio and Electroacoustics in
1972; the papers reference the classical work of Remez on Chebychev’s problem of optimal polynomial
approximation and its practical solutions. The program itself was re-published in 1973 with the authors
McClellan, Parks, and Rabiner. An expanded theoretical treatment and a slightly updated FORTRAN
program forms a major part of the digital signal processing reference book Theory and Application of
Digital Signal Processing by Rabiner and Gold, published in 1975. See Section 2 for the references.

The program that encapsulates the FIR design engine in a requirements-oriented design capability was
originally programmed in TRS-80 RATFOR by James K Beard in 1986, including user inputs of ripple and
stopband in decibels and a recursive search that allows specifying low-pass or high-pass filter
performance and finding the necessary number of weights or other parameter left free. A re-write in
Fortran 95 that included structuring the legacy engine modules in Fortran 95 was one update in 2001.
The program was updated with a Fortran 2008 compiler using the Absoft Fortran compiler’s Absoft-
specific pop-up dialog and plotting capabilities in 2013, with updates in 2014 (decimation filters and
arbitrary frequency response) and 2015 (user-specified frequency response equalizer design, updated
user interface, and added ReadMe file).

1.7 Revision History
The revision history is given in Table 1. Versions prior to adding the GUI are not listed.

Table 1. Revision History

Release ‘ Changes Date

Revision 0.90, Release Candidate 1 | First GUI and user-defined equalizer capability for 2013
old program

Revision 0.91, Release Candidate 2 | Added frequency response plots 2014

Revision 0.92, Release Candidate 3 | Added ReadMe, enhanced input parsing and error 2015
messages for subtle input errors, bug fixes

2 Principal References

2.1 Books

Lawrence R. Rabiner and Bernard Gold, Theory and Application of Digital Signal Processing, Prentice-Hall
(1975); ISBN 0-13-914101-4, ISBN-13:978-0139141010; Paperback: Prentice-Hall of India (1992) ISBN-
10: 0-87-692501-8, ISBN-13: 978-0876925010; ASIN: BO01G413JG pages 194-204 (FORTRAN program),
the entire portion of the book to that point develops and explains the theory of FIR filters that underlies
the implementation.

James K Beard, The FFT in the 21°* Century, Springer (2003); hard covers ISBN-10 1402076754, ISBN-13
978-1402076756; soft covers ISBN-10 1441954104, ISBN-13 978-1441954107; Kindle ASIN

Page 6 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

BOOOQEN5GS6. Also available from Springer as an e-Book. Chapter 3 is an exhaustive treatment of
spectral windowing for digital data streams, including Dolph-Chebychev, Taylor, and Bayliss.

2.2 Papers

2.2.1 The Computational Engine, its Limitations, and its Parameters
T.W. Parks and J.H. McClellan, "A Program for the design of Linear Phase Finite Impulse Response Digital
Filters," IEEE Trans. on audio and Electroacoustics, vol. AU-21, No. 3, 195-199, August 1972.

J. H. McClellan, T. W. Parks, and L. R. Rabiner, A Computer Program for Designing Optimum FIR Linear
Phase Digital Filters, IEEE Transactions on Audio and Electroacoustics, vol. AU-21, No. 6, pp 506-526,
December 1973.

O. Herrmannn, L. R. Rabiner, an D. S. K. Chan, Practical Design Rules for Optimum Finite Impulse
Response Lowpass Digital Filters, Bell System Technical Journal, vol. 52, No. 6, pp 769-799, July-August
1973.

2.2.2 The Remez Inequality and Approximation Algorithm
Evgeny Yakovlevich Remez, General Computational Methods of Chebychev Approximation, Atomic
Energy Translation 4491, Kiev, 1957; apparently a translation of the two Compt. Rend. papers.

Evgeny Yakovlevich Remez, “Sur les méthodes pour réaliser la meilleure approximation des fonctions
d'apreés le principe de Tchebychef,” Kiev, Académie des sciences mathématiques, 1935. In-4°, 162 p., fig.

Evgeny Yakovlevich Remez, "Sur la détermination des polyndmes d'approximation de degré donnée",
Comm. Soc. Math. Kharkov 10, 41 (1934).

Evgeny Yakovlevich Remez, "Sur un procédé convergent d'approximations successives pour déterminer
les polyndmes d'approximation”, Compt. Rend. Acad. Sc. 198, 2063 (1934);

Evgeny Yakovlevich Remez, "Sur le calcul effectiv des polynémes d'approximation des Tschebyscheff",
Compt. Rend. Acade. Sc. 199, 337 (1934).

See also the Wikipedia articles:

e https://en.wikipedia.org/wiki/Remez inequality

e https://en.wikipedia.org/wiki/Remez algorithm

2.2.3 Decimation Filters and Digital Quadrature Demodulation
James K Beard, Optimization of Discrete Signal Processors using Array Processor and CCD Technology,
IEEE ICASSP, April 1979.

2.2.4 Spectral Windows for Use with an FFT
James K Beard, Planar Array Design and Performance, presented at the Philadelphia IEEE, June 26, 2014,
slides available at http://jameskbeard.com/jameskbeard/Papers.html#SelectedPapers. An errorin the

literature on Bayliss windows, useful for pulse-splitting time-of-arrival estimation, is corrected and high-

Page 7 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

performance Bayliss windows in one and two dimensions are demonstrated. See my 2003 book,
Chapter 3, for an exhaustive treatment of this and other spectral widows in one dimension (digital data
streams).

2.3 Current Versions of the Program
The current release of this file and a ZIP archive containing the program and this ReadMe file is online at

http://jameskbeard.com/jameskbeard/Files.html#FIRDSN

Page 8 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File

3 Using the Program

3.1 Installing and Starting the Program

The FIR Filter Design Program

December 2015

The program is currently a 32-bit Windows executable compatible with Windows 10 and previous
Windows 32-bit and 64-bit systems. The files in Table 2 are included in a ZIP archive and should all be
put in the same folder. A shortcut can be generated that can be put anywhere, such as the desktop, a

user interface, or a folder. If the startup folder is specified in the shortcut, the DLLs must be in the

startup folder. The Equalizer.xlsx and Equalizer.csv files are there to support an example and can be

anywhere you want to run the program. The output files will be generated in the default folder where

the program starts; you can set the start folder in a shortcut. The program will allow you to browse your

computer for the equalizer data input file.

Table 2. FIR Filter Design Files

File name ‘ Purpose License
FIR_Design.exe Principal executable James K Beard
libgomp.dil Multi-Core Support LGPL (v2 only)
Qtcored.dll Windows and Dialogs LGPL (v2.1 only)
Qtguid.dll Windows and Dialogs LGPL (v2.1 only)
Equalizer.xslx Example — Equalizer Design James K Beard
Equalizer.csv Example — Equalizer CSV file James K Beard

The license “LGPL” referred to in Table 2 is
the Lesser GNU Public License, which is
given with its versions at

https://www.gnu.org/copyleft/lesser.html

The license “James K Beard” means that
the program is copyright 1986, 2001, 2013-
2015 by James K Beard, all rights reserved.
Your use of the program is predicated on
your acceptance of the conditions in the
first pop-up dialogue, shown in Figure 1.
The program opens with a maximized text
window and this dialogue. The user must
check the box marked “Agree” and clock
on “OK” to proceed; leaving the box

M User Agreement and Selection ? X

FIR Filter design program copyright 2013-2105 by James K Beard, all rights reserved.
Version 0.92 Release Candidate 3

FIR filter design engine derived from

T.W. Parks and J.H. McClellan, “A Frogram for the design of Linear Phase Finite
Impulse Response Digital Filters, ™ IEEE Trans. on audio and Electroacoustics,

AU-21, No. 3, 195-199, Aug. 1972

In continuing you agree to hold all parties harmless in the use of this program and any and
all results obtained from this program.

[] Agree?

Select run type:

(®) Filter design

() Run test cases and exit

Cancel

unchecked or clicking “Cancel” will exit the program, leaving the text box up, but with no capability

except display, save as text file, and exit. Checking the “Agree” box and “OK” allows the program to

proceed and an extra menu item “FIR Design” to the text window, as shown in Figure 2 below. Once the

run has been completed, or terminated at your option, you can re-start the program by selecting “New

FIR Filter Design” from that new menu item.

Page 9 of 37

Figure 1. Opening Dialogue; Appears Only Once Per Run

Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

The “Run test cases and exit” reproduces the examples from the legacy publications.

. FIR_Design.exe - [FIR_Design.exe]

File Edit Window FIR Design

Band Type: 1 Mew FIR Filter Design
input selection: I
FIE filter Design, Number of Weights Optimized

f##%##New FIR Filter Design ####
Initial PMC DCT Type = 2

Initial Search Grid Density = 64
Minimize NHumber of Weights
NOW_00: 51.7117479113301
Filter will be ewven order

i mnasshand.i stonbhand: 1 2

Figure 2. New Run Menu Item; Use for New Design Once Program is Started

3.2 Simplest use: Low Pass or High Pass Filter
Once the opening dialogue is passed, the filter

® Select Filter Type

type selection dialogue of Figure 3 appears. The

default radio button is a low-pass design. Click P e e

OK” to proceed to specify that you want a FIR low @® FIR low pass design, program finds one free parameter

pass filter. The high pass filter design process is

.. . (") FIR high pass design, program finds one free parameter
similar to that of the low-pass design process,

other than that an even number of weights is not () Multiple band, Hilbert Transformer, or Differentiator

possible. () Equalizer with one user-spedified frequency response

If a FIR low-pass or high-pass design is selected,

then the program presents the dialog of Figure 4. Cancel
This dialog provides control of the most important Figure 3. Filter Type Selection Dialogue

feature of this program: the user determines

which of four filter specifications is to be left free for the program to determine. The program uses the
approximations published by Hermann, Rabiner and Chan (and elucidated at some length in the book by
Rabiner and Gold) as a starting point, then uses actual filter designs in a secant method algorithm to
determine the free parameter that provides a FIR filter design that meets or exceeds requirements.

A FIR filter is characterized in the Z plane as all zeros, with the zeros on the unit circle in the stopband
and near the minima of the ripples in the passband. Passband zeros are in pairs, one inside the unit
circle and the other outside the unit circle. As all filter design parameters save one are held constant
and the free parameter is varied slowly, the zeros migrate. As the free parameter changes, the zeros
migrate between the passband and the stopband. If the free parameter is the number of weights, the
number of zeros is equal to one less than the number of weights. The achieved parameters exhibit a
step change as the number of zeros in the passband changes, so an exact match to the fixed design

Page 10 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

parameters may not exist. The algorithm detects when this happens and selects the value of the free
parameter that slightly exceeds requirements.

B Select Type of Optimization

Select next action:

(® Find order (the number of weights) given performance spedfications
() Find transition width given order and other performance spedifications
() Find peak-to-peak passband ripple given order and other performance spedfications

() Find stopband attenuation given order and other performance specdifications

Figure 4. Dialogue for Selection of Free Parameter

At this point, the program needs to know whether you

[N Decimation/Interpal...

are designing a decimation filter or a general low pass
filter, and you will get the dialogue shown in Figure 5.
The default is a normal FIR filter; decimation and Select type of FIR filter design:
interpolation filters are discussed in Section 3.3 below .
) B (®) Normal FIR Filter
as a separate design process; click “OK” to proceed.

() Decmation or Interpolation FIR Filter
This brings us to the parameters of the filter that you

define. These are presented to you in the next

dialogue, shown in Figure 6 below. 0K Cancel

Figure 5. Normal or Decimation Selection Dialogue

Page 11 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

Note that the dialogue begins with

M Optimize low-pass for number of weights

three radio buttons, which allow the
order of the filter (the number of Determine order as free, odd, or even

weights) to be unconstrained, or to O Order may be odd or even

be forced to be odd or even. This is O Force order as odd

(®) Force order as even

because the implementation may

. Enter ripple, stopband attenuation, bandwidth, and transition width below:
define whether the number of

Peak-to-peak passband ripple, dB |D.1

weights must be odd or even. If the

Minimum stopband attenuation, dB | 55

latency of the filter must be an

integral number of sample times,
then the order must be Odd |f the Transition width as a fraction of sample rate |D,DS

available convolution filter hardware

Passband bandwidth as a fraction of sample rate (tiny to just under 0.5) |[J.15 |

Cancel

allows an even number of weights,
then of course the order of the filter Figure 6. Specification Dialogue for Low Pass Filters

must be even. A high-pass filter

must be odd order to prevent forcing a discontinuity in the frequency response, as explained in Section
4.2. If a high pass filter is being designed, additional text in the prompts of the dialogue shown in Figure

6 will warn against allowing an even number of weights.

The user specifies the peak-to-peak passband ripple in

B Mext action?

decibels, the stopband attenuation in dB, the passband

width, and the width of the “don’t care” region between Select next action:

the top of the passband and the bottom of the stopband. {®) Accept the FIR filter design, proceed to select outputs
The numbers shown in Figure 6 are the defaults. Enter (7) Perform another FIR fiter design

your own values and press OK. Note that the sum of the

passband bandwidth and the transition width must be less Cancel
than 0.5 to allow for a nonzero bandwidth for the stop

band.

Figure 7. Prompt to Approve a Design
The filter design will then be done, and then there will be a
“last chance” prompt as shown in Figure 7. The text box will show the classical filter design output that
is used in the book and papers that include Parks and McClellan that are cited in Section 2; this output
for the inputs from Figure 6 are shown in Figure 8. The success of the design can be seen immediately
from the small values in the “Deviation” rows, which are in bold type in Figure 8. The “Extremal
frequencies” are the frequencies of the ripple peaks.

Page 12 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File

The FIR Filter Design Program

December 2015

E =

h(1) =
h(2) =
h(3) =
h(4) =
h(5) =
h(6) =
h(7) =
h(8) =
h(9) =
h(10) =
h(11) =
h(12) =
h(13) =
h(14) =
h(15) =
h(16) =
h(17) =
h(18) =
h(19) =
h(20) =
h(21) =
h(22) =
h(23) =
h(24) =
h(25) =
h(26) =
h(27) =
h(28) =

Lower Band Edge
Upper Band Edge
Desired value
Weighting
Deviation
Deviation, dB

Extremal Frequencies--Maxima

Bandpass Filter

Filter Length = 56

Finite Impulse Response (FIR)
Linear Phase Digital Filter Design
Remez Exchange Algorithm

Impulse Response *****

-1.07805312E-03
3.10888884E-05
1.79203528E-03
2.91983502E-03
1.40601166E-03

-2.19413286E-03

-4.20884128E-03

-1.40772505E-03
4.45293275E-03
6.92127273E-03
1.50487931E-03

-7.74449424E-03

-1.04088602E-02

-8.57398061E-04
1.29587131E-02
1.50663323E-02

-1.05206717E-03

-2.12204414E-02

-2.14786858E-02
5.43619473E-03
3.54510111E-02
3.16197150E-02

-1.57193368E-02

-6.63289672E-02

-5.48293316E-02
5.11443210E-02
0.21070088
0.32951125

Band 1
0.00000000
0.15000000
1.00000000
1.00000000
0.00477627
0.08297287

O wooo

= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(
= h(

Band

.20000
-50000
-00000
.23706
.00147
-56.

62124

0.0000000 0.0206473 0.0407366 O.
0.0987723 0.1160714 0.1322545 O
0.2000000 0.2039063 0.2145089 O
0.2602679 0.2775670 0.2948661 O
0.3478795 0.3657366 0.3835937 O
0.4371652 0.4550223 0.4728795 O

56)
55)
54)
53)
52)
51)
50)
49)
48)
47)
46)
45)
44)
43)
42)
41)
40)
39)
38)
37)
36)
35)
34)
33)
32)
31)
30)
29)

2
000
000
000
113
549
819

of the Error Curve

0608259
-1450893
.2284598
.3121652
-4014509
-4907366

0.0797991
0.1500000
0.2440848
0.3300223
0.4193080

AE A A A A A A AL AAA A AT A AL A AAAATAAAAAAAAAAXAAAXAAAXAAXAAAXAAAAAAAAAAAAAAAAAAKhAAhAhix

Figure 8. Classical McClellan and Parks FIR Filter Design Output

Page 13 of 37

Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

The dialogue shown in Figure 9 will appear,

(8 Select Murmnber of Bits for Rounding

providing you with an option to round the filter

weights to a specified number of bits. Enter Use 0 if you don't want rounding.
zero to skip rounding the filter weights. The) B))

.) |lse 24 for IEEE 754-2008 single predsion floating point.
integer format is ones-complement, the

standard small computer format, with a sign bit, Number of Bits (2 to 48) |16|

so a meaningful output is to an integer with two

or more bits. Cancel

Click OK and the program will proceed to write

the output files and compute plots of the Figure 9. Rounding to Word Length Dialogue
frequency response. The plot in the foreground

is similar to that of Figure 10. The other plots are discussed in Section 3.7.

Frequency Response

WFIFR Filer
W FRourded to 16 Eits

Resporse, dB
&
1

. ANANNANNNNNNANNNNNNN
T
-1 4

DI 0 .Il D.I2 D.IS D.I4 u] .I5

f/(sample rate)
Figure 10. Low Pass FIR Filter Frequency Response

The plot will be maximized. De-maximize or delete the plot window; that will de-maximize the text
window and all six plot windows. The program saves all plots as PNG files.

The frequency response plot using the computed filter weights is shown in green, and over it a plot
using the filter weights rounded to the specified number of bits. When the plots overlay almost exactly,

Page 14 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

as shown in Figure 10, the specified accuracy is sufficient for the filter with rounded weithts to meet
specified performance requirements.

You may close the plot windows and use the added text menu item to perform another design. There
are two points to observe:

e If you close the application window, you must run the program again and the dialogue of Figure
1 will be repeated.

e Do not close the text window, as a new one will not be generated when you make another run.
This can make response to the prompt from the pop-up at Figure 7 guesswork. If you
accidentally close the text window, close the application and restart the program.

e The text window and text output file will be appended as you continue to use the program until
you close the application. Note that the log is repeated in the output file yyyymmdd_<run
type>.txt so that you do not need to save the text from the text window.

e The six PNG files that show the frequency responses will be overwritten once you click “OK” on
the prompt shown in Figure 9. Use, move, or rename them if you don’t want them overwritten.

3.3 Decimation and Interpolation Filters
When the “Decimation or Interpolation filter”

M Optimize low-pass decimation filter for number of wei... ? x

radio button is selected in the dialogue of
Figure 5, the filter is specified to optimize it or Determine order as free, odd, or even
decimation or interpolation. {0) Order may be odd ar even

(") Force order as odd
In decimation, for a decimation ratio of K, an
. . . (®) Force order as even
integer greater than 1, the filter is
Enter ripple, stopband attenuation, bandwidth, and dedmation ratio below:

implemented as a convolution between the
Peak-to-peak passband ripple, dB ||:|.1 |

input data stream and the filter weights

. Mini o) d atte tion, dB
computed at the input sample rate, but only rimum stopband attenuation E |

every Kth output sample is computed for the (Bandwidth must be less than 1/{Z*Decimation_Ratio)

output data stream. Passband bandwidth as a fraction of sample rate |[J,z3 |

Dedmation ratio |2 |

In interpolation, use a decimation filter and
insert K-1 zero samples between each input E—
data sample and filter the resulting data

stream. PP .
Figure 11. Decimation and Interpolation Specification Dialogue

Decimation aliases data, noise and
interference at frequencies higher than the decimated sample rate into the passband. In decimation
filtering, the filter stopband attenuation limits this bleed-through.

In interpolation, the filter stopband prevents the signal spectrum from being repeated an extra K-1
times. Please refer to Figure 12 for considerations in specifying a FIR filter for decimation or
interpolation.

Page 15 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

The frequency f%K becomes the

Nyquist frequency for the lower < T >
sample rate, so the passband width

f%
must be less than K The

beginning of the stopband, optimally, < B >
aliases to the top edge of the

passband, and this branch of the
design process designs the filter to do
exactly that.

The specification dialogue for
interpolation and decimation filters is

shown in Figure 11. Comparing this O fS fS

dialogue with that shown in Figure 6, - —

note that instead of the transition 2 K K

width, the decimation ratio is Figure 12. FIR Filter Considerations in Decimating by a Factor of K

specified. The transition width is
determined from the inputs in the dialogue of Figure 11 and is

Transition width T 1 Passband bandwidth B
= -2. : (3.1)
<Sample rate f, > <Decimation ratio K> <Sample rate f, >

The rest of the design process proceeds as with the low-pass or high-pass filter. If you prefer to specify
your interpolation or decimation filter normally instead of using the dialogue of Figure 11, click the
“Normal FIR Filter” radio button when the prompt shown in Figure 5 appears.

A decimation filter may be high-pass. This may be desirable when there is a DC (zero frequency)
component in the data but the desired signal is in a band that does not include zero frequency, and the
sampling and aliasing are selected to alias the signal band center to Nyquist (e.g., half the sample rate)
instead of baseband, thus rejecting the DC component by the stopband attenuation of the filter. See
digital quadrature demodulation, Section 3.6 for cases where the signal is not at baseband.

A high-pass filter may not have an even number of weights because the frequency response of a
bandpass filter will always be zero at half the sample rate, which is the top of the band — a contradiction
with the requirement that the filter be a high-pass. See Section 4.2 for details on why this is so.

Page 16 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015
3.4 Multiple Bandpass and the Classical Inputs
The classical inputs for the Parks, OB Select Fitter Type . ”
McClellan, and Rabiner programs provided
as source code in the references of Section EeacE b Gl o eso
2 are available by clicking on the ratio © Band pass desion
button labeled “Multiple Band, Hilbert SD' rentator
Hilbert Transfo
Transformer, or Differentiator” on the e e | |
Number of weights 42
beginning dialogue given in Figure 3 and AR
licki OK. This brings up the selection Number of Bands (use 1 for differentiator or Hilbert transformer)
clicking OK.
ch Grid i
dialogue given in Figure 13. sesreh Gnabensty [z2 |
The entire paradigm of how the run e

proceeds from here regresses to that of

the legacy program. Although GUI

dialogues do support the run, the inputs and
outputs of the legacy program are present.
Select the radio button for the type of FIR filter
that you want to design.

3.4.1 Multiple Band Bandpass Filters

The passband ripple and stopband attenuation
are not inputs in this branch of program
execution, but instead weights on the Chebychev
approximation errors for each band are the user
inputs. To achieve specified passband ripple and
stopband attenuation, either use a dummy run of
a standard lowpass design with your ripple and
stopband attenuation requirements and select
the stopband weighting from the legacy output
as shown in Figure 8, or use equation (4.16) in
Section 4.3.

Select the number of weights, number of bands,
and search grid density in the dialogue shown in
figure Figure 13. The bands will specified in the
following dialogues. Note that the default Remez
search grid density is 32; the legacy program uses
16 but experience has shown that 32 provides
excellent accuracy for larger filters with no
noticeable increase in computer loading. The
automated designs used in the other execution
branches use 32. Note that to reproduce the

Page 17 of 37

Figure 13. Dialogue for Classical Inputs

M Eand Definitions

Band 1
Left Band Edge 0.0 |
Right Band Edge 0.1 |

Desired Frequency Response ||].|] |

Band Weighting 10.0 |
Band 2

Left Band Edge 0.2 |
Right Band Edge 1035 |

Desired Frequency Response | 1.0 |

Band Weighting 10 |
Band 3

Left Band Edge 0.425 |
Right Band Edge 0.5 |

Desired Frequency Response ||].|] |

Band Weighting 10,0 |

Cancel

Figure 14. Band Input Dialogue

Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

examples of the legacy publications exactly, a grid density of 16 must be used.

The next dialogue is shown in Figure 14. The band edges, desired frequency response, and band
weighting are required for each band. A maximum of five bands will be presented per dialogue. If you
have more than five bands, the dialogue will be repeated as necessary until all the band inputs are
obtained.

At this point the filter is designed and the acceptance dialogue of Figure 7 is presented, and the legacy
ASCII filter design output as shown in the example of Figure 8 is shown in the text window, and the
program proceeds as with the other execution branches.

3.4.2 Differentiator and Hilbert Transformer

The derivative of a digital data stream is not a well-defined concept, but a frequency domain description
of the derivative can be formulated as the Fourier transform of the signal times frequency. This
rationale is evident on examination of the definition of the inverse Fourier transform,

(3.2)

which is valid when both integrals exist, as they will with differentiable time functions of finite
amplitude and duration.

The Hilbert transform is used in harmonic analysis. One way of understanding the Hilbert transform is

that if two real signals f (t) and g (t) make up a complex analytic signal by
fe(t)=f(t)+j-g(t) (3.3)

then the real signals f (t) and ¢ (t) are Hilbert transforms of each other. In addition, the Fourier

transform of fc (t) is zero for negative frequency. This means that an FFT that accepts complex input

can accept the sampled signal as its real data and its Hilbert transform as its imaginary data and produce
a discrete Fourier transform of the signal, which can eliminate adding zero data or extra steps in the
Fourier transform algorithm to deal with real data.

The current Wikipedia article has more information on the history, mathematics, applications, and
research areas of Hilbert transforms with references for further reading:

https://en.wikipedia.org/wiki/Hilbert transform

Be sure and make the number of bands 1 in the dialogue of Figure 13. Note that a both a differentiator
and a Hilbert transformer are high-pass filters that are odd in the time and frequency domains, and
designs go better when an even number of weights is used. See Figure 25 for an example of a

Page 18 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

differentiator with an odd number of weights (frequency response plotted on a linear scale), and
compare with Figure 26; the Chebychev fit of the frequency response will be more accurate if large steps
over a small frequency range are not required.

The Hilbert transformer inherently has a large step at zero frequency, as shown in Figure 27, so don't
specify the low end of the band as zero.

The design proceeds as with the muliti-band bandpass filter. The “Desired response” is a scale factor
and should be left at 1.0. The band weighting has no effect when there is only one band, but it must be
positive for the computational engine to work properly.

3.5 User-Defined Equalizer
An equalizer is a filter that has a user-defined frequency response. An example is included with this
program for a hearing aid equalizer that compensates for hearing loss that increases with frequency.

The first step is to define your desired frequency response. Please refer to the example file
Equalizer.xslx, first tab, as shown in Figure 15. Input your data in the format in the table in the first two
columns, frequency in the first column, column A, and desired response in dB in the second column,
column B. Note that the frequency intervals are whatever you like; the example assumes that you have
data from a hearing test machine provided by a qualified audiologist or speaker system frequency
response measurement. The third column, column C, uses a spreadsheet equation to convert the dB
figures in column B to amplitude.

| A1 - fe | f,Hz
A B C D E F G H I i K L M N o}
1 |f, Hz !A, dB A, Amplitude fsamp
2 100 1] 1 11014 This is the sample rate. Example is 1/4 the CD sample rate, used for some hearing aids
3 500 1] 1
| a 1000 0 1
5 2000 -10 0.316228 Instructions for Use
6 3000 -20 0.1 Define the sample rate in the cell above to convert frequency in Hz to normalized frequency
7 4000 -30 0.031623 Use first two columns of this tab to define your equalizer curve
8 5000 -40 0.01 Use the third column to convert response dB to amplitude
| 9 Use the second tab, "Equalizer,” column 1, to convert the data in the first tab to normalized frequency
| 10 Use the second tab, "Equalizer,” column 2, to provide equalizer amplitude
12 Save the second tab, "Equalizer,” as a CSV file for use by the FIR filter design program
12
| 13 The first two columns given here represent the results of a hearing test.
|14 The equalizer will be used to condition sound in a hearing aid

Figure 15. Equalizer.xlsx Tab 1

The sample rate of the digital processor to be used is also entered on the first tab, in cell F2 of the first
tab in Equalizer.xIsx. The units of frequency must be the same as you used in column A. In
Equalizer.xlsx, all frequencies are in Hz.

The second tab of Equalizer.xlsx, shown in Figure 17, is computed from the data on the first tab. Column
A has a title, “f” in the first cell while the rest of Column A is corresponding cells in column A of tab 1
divided by the sample rate in cell F2 of tab 1, providing a list of frequencies as a fraction of the sample
rate.

Page 19 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

Column B of tab 2 has a title “a” for amplitude in the
first cell, and the each value is the reciprocal of the
amplitude computed in column C of the first tab.

Once you have the table in tab 2 written correctly,
export that tab as a comma-separated value (CSV)
file. The file Equalizer.csv is also included with this
program so that you need only run the FIR design
program to go through the example.

Once you select the “Equalizer with one user-
specified frequency response” radio button in the
dialogue of Figure 3, the dialogue of Figure 16 appears.

" ”

You can click the shaded ellipsis (“...”) to browse your

computer for an input file. The program expects this to
be a CSV or other text file with two columns, with one-
row headings; it will ignore the first row. The first
column must be frequencies as a fraction of the sample
rate and all must be zero to 0.5. The second column
must be the desired equalizer amplitude response of
the FIR filter as amplitude (not decibels); the maximum
amplitude does not need to be normalized. All
amplitudes must be nonnegative.

The program then reads the input data, normalizes it,

PR —— P

Al - fo| T
A B C D

1 |f !a

2 | 0.009079 1

3 | 0.045397 1

4 | 0.090794 1

5 | 0.181587 3.162278

6 | 0.272381 10

7 | 0.263174 31.62278

g | 0.453968 100

Figure 17. Equalizer.xlsx Tab 2 of, Also Equalizer.csv

M Input Data File Selection ? x

Input data file |Equalizer.u:sv| |

Figure 16. Equalizer Input File Selection Dialogue

and uses a bicubic spline function to interpolate it into a smooth curve for use with the FIR filter design

engine. The end condition at zero frequency is zero slope; the end condition at the highest specified

frequency is “free,” e.g. the second derivative is zero.

The interpolated frequency response on a dB plot is presented, full-screen, with a prompt on whether to

proceed. If there is a bad data point or the data has gaps or irregularities that force the interpolated

frequency response to have undesired artifacts like overshoots or bulges, you can abort the design and

adjust the inputs and try again. The frequency response for the example of Equalizer.xlsx is shown in

Figure 18.

Page 20 of 37

Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

Frequency Response

WFIR FAltar
M Rourded to 16 Bits

Responl”se, dB
]

| T |
u] 01 0z 0.3 0.4 05

f/(sample rate)

Figure 18. Equalizer Example Frequency Response

3.6 FIRFilter in a Digital Quadrature Demodulator

The problem solved by a digital quadrature demodulator is when a signal of bandwidth B is prepared
for sampling at I.F. by an analog filter that has acceptable stopband attenuation beyond a total
bandwidth of W, but for practical analog filters W > B, and high performance is required for signal
accuracy, e.g., the application requires

e Linear phase,
e Amplitude accuracy ensured by accurate control of low passband ripple,
e High stopband attenuation, and

e Complex data rate for processing that does not exceed the Nyquist requirement for complex
signals of B by an excessive degree.

Latency is half the filter length. The filter length for most designs is about 2-5T where T is the
transition bandwidth a a fraction of the sample rate, so the latency is approximately

1.3
<Transition bandwidth, KHZ> '

<Latency, ms> ~ (3.4)

Page 21 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

The combination of high performance, high accuracy, linear phase, and latency on the order of that
given in (3.4) are achieved using FIR filters.

In this Section, when discussion complex signals, the signal bandwidth B is aliased to baseband as a

complex signal, so that the FIR decimation filter passband is half this bandwidth. We use B.gypex

below when appropriate to minimize confusion with the Sections on real signal filters.

Note that this approach may show better accuracy and performance than the complex signal obtained
by using a Hilbert transformer to generate an imaginary part for a real data stream, because with a
guadrature demodulator the real and imaginary parts are outputs from the same filter.

A quadrature demodulator is a dual mixer that downconverts a signal to baseband with an oscillator
with two outputs, 90 degrees apart in phase, to produce a complex data stream. This means that the

sequence of values from the beat oscillator is { LL=],-1L—-],.. } so that the action of the mixer in

Figure 19 is actually a multiplexer into two channels, one for the real data and one for the complex data.
The clean-up filter provides a complex output a either the input sample rate or, most often, the input
sample rate divided by an integer, the decimation ratio.

Sample
Rate f

lean-
e(t) ol X)— CeF?I?eller —— Cour (ti)

exp(—j-27- fy-1)

Figure 19. Digital Quadrature Demodulator Block Diagram

The design equations for a signal of bandwidth B with band center frequency f, are as follows. We

wish to sample the real data so that the center frequency aliases to either positive or negative half-
T
Nyquist so that the quadrature demodulator shifts exactly E or 90 degrees between samples to put the

complex signal at baseband or Nyquist, and the clean-up filter can be a simple decimation filter. The
qguadrature demodulator and clean-up filter are combined to form a multiplexer.

The sample rate to alias the band center frequency to half Nyquist, midway between 0 and Nyquist, or

+ f% must follow the rule

Page 22 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

4. f
f. = 0 3.5
S 4.k=+1 3.3)

where the upper sign aliases the signal band into positive frequencies and the lower sign aliases the
signal band into negative frequencies; see Figure 20.

Signal aliased to — & Signal aliased to + %

e AN e

Figure 20. Aliasing Diagram For Undersampled Real Data

In Figure 20 the signal bandwidth is B, and W is the bandwidth of the pre-sampling clean-up filter to
the required attenuation for the application. The Nyquist sampling theory limit for avoiding aliasing
unwanted signals into the data band is

fs>B+W (3.6)

with equality only when the band center is plus or minus half-Nyquist. Note that B+W > 2B, the
Nyquist sample rate requirement for real signals.

The quadrature demodulator shifts by 90 degrees each sample and thus puts the signal at either
baseband or Nyquist, and presents the real signal with multiplication by the sequence

{. ..,1,—j,—1,—1,...} so that it can be implemented as a multiplexer, allowing the clean-up filter to be
designed as a decimation filter — and in fact the output data need only be computed at the decimated
rate. Note that when W > B as is often the case in practice, equation (3.6) shows that the output
data stream may be decimated by a factor D where

B+W

D : 3.7
<3 (3.7)

The frequency-shifted signal before clean-up and decimation is shown in Figure 21.

Page 23 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

Figure 21. Frequency-Shifted Signal Before Clean-Up

Note that in Figure 21, the signal bandwidth B is centered about zero, with half the signal band as
positive frequencies and half as negative frequencies, which are not ambiguous with a complex signal.
Figure 21 shows the signal band shifted to baseband; shifting to Nyquist is similar. If there isa DC
component in the analog signal, it will be shifted to plus or minus half Nyquist, which will be in the
stopband of the decimation filter when D > 2.

The block diagram of the atual implementation of a digital quadrature demodulator is shown in Figure
22. The real signal is antialias filtered and, conceptually, a sampler-multiplexer feeds two FIFO registers
that provide data to two FIR filters derived from a real decimation filter as explained above. The FIR
filter output rate is the decimation rate, and the output is complex data. Actual implementation may
use multiple parallel FIR filters or other architectures.

Page 24 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File

Real
Analog
Signal
AnalogFilter
e(t)—
() Bandwidth W

The FIR Filter Design Program

December 2015

Filter

S | > Real Clean-Up
amp € {hllol'h3rolh5,,,

Rate f ’

—> e
}
Complex

« o

Digital

|Imaginary Clean-Up
{OI-hZIOI h4101_h6,_

Signal

L > 6
!

Digital filters computed

At rate f/D

Figure 22. Implementation Configuration of Digital Quadrature Demodulator

The specifications on the decimation filter for the dialogue of Figure 11 are given in Table 3.

Table 3. Decimation Filter Requirements for Digital Quadrature Demodulator

Parameter Requirement
Peak-to-Peak passband ripple, dB Application requirement for accuracy; try 0.1 dB
Minimum Stopband Attenuation, dB Application requirement for accuracy; try 45 dB or
more
Passband bandwidth B
> —COMPLEX (aquality preferred)
Decimation Ratio f
D< S
Beompiex
Page 25 of 37

Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

3.7 OutputFiles
Each full program run will result in the seven files of Table 4. The comma-separated variable (CSV)
format is selected for data output to provide machine readability by other programs and spreadsheets.

Table 4. Output Files

File Name Purpose

yyyymmdd_hhmm_Filter_Weights.csv Double Precision filter weights
yyyymmdd_hhmm_Frequency_Response.csv | Frequency response table
yyyymmdd_hhmm_Hex_Weights.csv Weights rounded to specified word length, scaling, and
other data needed for implementation
yyyymmdd_hhmm_<Function>_Log.txt Text run log; primary use is access to classical ASCII

design output, also for debugging. The <Function> is
the user option of filter design type and will be one of
Optimization, Classical_FIR_Design, or
Equalizer_FIR_Design.

plot_1X.png Principal frequency response in dB, frequency 0 to half
sample rate

plot_2X.png Expanded frequency response in dB, frequency minus
half sample rate to plus half sample rate

plot_3X.png Zoomed back, three cycles, in dB, frequency minus 1.5
times sample rate to plus 1.5 times sample rate

plot_1XL.png Principal linear frequency response, frequency 0 to half
sample rate

plot_2XL.png Expanded linear frequency response, frequency minus
half sample rate to plus half sample rate

plot_3XL.png Zoomed back, three cycles, linear frequency response,
frequency -1.5 times sample rate to +1.5 times sample
rate

The Hex Weights output file includes the filter weights before and after rounding, the scale factor that
makes the largest weight the largest possible number for the specified number of bits, and the scaled
filter weights in decimal integers and in hexadecimal format, e.g. everything you need to implement the
filter and scale its output. This file is written only when the user elects to find filter weights that are
rounded to integers.

When, in the first one-time-per-run dialogue of Figure 1, the “Run test cases and exit” radio button is
selected, the string in the log file name be “NEWFIR_Test,” the plot PNG files will not be generated, and
the truncation of weights to a binary integer is not done. The filter designs used as examples in Rabiner
and Gold, the book referred to in Section 2.1, are computed one at a time and their classical text
outputs are provided in the text window. This is primarily a debug or verification function.

A verbose log, including a classical FIR filter design output as shown in Figure 8 for each filter design,
including an abbreviated form for the weights truncated to a specified binary word length, is in the text
window. The text window can be saved using the “Save” or “Save As” options in the File menu. The file

Page 26 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

will be plain text, with the default file name “FIR_Design.exe output” with no extent; you can specify the
file name including an extent of “.txt”. This file will be substantially the same as
yyyymmdd_hhmm_<Function>_Log.txt and need not be saved.

The file names of the CSV files and the log file begin with the date and time so that they will remain until
deleted by the user, but the plots in the PNG file names do not change so the files will be overwritten
each time a run finishes, unless the files are renamed or moved.

The frequency response in dB from 0 to half the sample rate is useful in lowpass, highpass, bandpass,
and equalizer filters. The zero-centered frequency responses are useful in understanding any issues that
arise with the use of an even or odd number of weights; see Section 4.2. The linear frequency response
plots are useful in understanding differentiators, Hilbert transformers, and some equalizers, and for user
information in the event that issues arise from a design with an odd number of weights; again see
Section 4.2.

4 Technical Details

Linear phase convolution digital filters have an impulse response that is a sequence of the weights at the
sample rate. The weights are symmetrical about a center point to achieve the linear phase property.
This means that the frequency response can be posed as a real function, possibly with a constant phase
shift of 90 degrees, referenced in time about that center point, which conveys the property of linear
phase — the time delay of the filter is half its duration for all frequencies. The filter impulse responses
are even for bandpass filters, and odd about the center point for differentiators and Hilbert
transformers. Expressing the frequency response as a Fourier series referenced in time about the center
point and accounting for these four configurations means that there are four types of linear-phase FIR
filters.

4.1 The Four Types of FIR Filters
The frequency response of a FIR filter is expressed algebraically as

N-—

Ho(f)=2h(n)~exp(—j-27r-n- T)

n=

:exp(—j 27[% f -TSAMPJ-H (f)

LN

(4.1)

The complex term represents a time delay to the center of the filter and H (f) is a real function that

gives the frequency response,

Page 27 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

N-1

2
A +2'2Wi -cos (2770 f-Tguye), N 0dd, h(*) even

N
2
z cos((i —%j f T j, N even, h(*) even
i=l

H(f)= n 42)
ol Wy +2-D wsin(27-i- f - Tgyye) |, N odd, h(*) odd
i=1

N
2

j. 2.Zwi -sin(2jz'~(i —%j f 'TSAMP] , N even, h(*) odd
i=I

The fact that the frequency response is a result of two factors, a time delay and a real (or imaginary)
frequency response, means that the transfer function is described as linear phase. In the paragraphs

below, we will drop the factor of j for odd transfer functions and omit W, for odd transfer functions

because W, is always zero when the transfer function is odd.

4.1.1 Type 1: Symmetrical Impulse Response, Odd Order
The impulse response is even about the center point so the frequency response is given in terms of a
cosine series,

N-1

2 -
Hovee o (F) =W, +2- > wi-cos (270 f - Tgupe) (4.3)

i=1

Here, W, is the center weight, and the weights W, are numbered sequentially away from the center.

Teavp is the sampling time, or one over the sample rate.

4.1.2 Type 2: Symmetrical Impulse Response, Even Order

Again, the impulse response is even about the center point so the frequency response is given in terms
of a cosine series, but the center point is midway between two data points, so the frequency response is
given by

N
2

Hope o (F)=2-Dw, cos(2i-1)- f~TSAMP). (4.4)
i=1

4.1.3 Type 3: Anti-Symmetrical Impulse Response, Odd Order
The impulse response is odd about the center sample so the frequency response is given in terms of a
sine series,

Page 28 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

=

-1

'MN\

HTYPE_3(f):2 W -sin (2771 f - Tgye) (4.5)

There is no zero term for the center sample because the center weight is always zero.

4.1.4 Type 4: Anti-Symmetrical Impulse Response, Even Order
The impulse response is odd about the center point so the frequency response is given in terms of a sine
series, but the center point is midway between two sample points, so the frequency response is given by

N
2

Hovee 4 (f)=2-> W -sin(7z-(2i=1)- f - Tpye). (4.6)
i=1

4.2 Properties and Limitations of the Four Types of Frequency Responses

The principal constraint that provide the properties of linear phase (weights symmetrical or
antisymmetrical about the center of the filter) give us the Fourier transform equations for the frequency
response that we see above as equations (4.3), (4.4), (4.5) and (4.6). These properties come with the
price that precludes certain types of filters in each of the three transfer functions other than Type 1
because the transfer function is zero at either the origin or at Nyquist; the Nyquist frequency is half the
sample rate.

The fundamental properties of these frequency responses as given are

e Type 1and Type 3, the odd orders, have a frequency response that is periodic in frequency with
a period of the sample rate.

e Type 2 and Type 4, the even orders, have a frequency response that is periodic in frequency
with a period of twice the sample rate, and is zero at Nyquist frequency.

e Type 1 and Type 2, the filters that are even about the center point, have a frequency response
that is even about zero frequency.

e Type 3 and Type 4, the filters that are odd about the center point, have a frequency response
that is odd about zero frequency.

The characteristics of each filter about Nyquist are summarized in Table 5 below. Note that when the
number of weights is odd, the filter frequency response has the same gross characteristic, remaining a
Type 1 or Type 3, but when the number of weights is even, the gross filter response characteristic about
Nyquist is different, a Type 2 becoming a Type 4 and a Type 4 becoming a Type 2. This is because
offsetting the frequency response by Nyquist, or half the sample rate, alternates the sign of the filter
weights. When the number of weights is odd, the center point of the filter falls on a weight and the
gross nature of the frequency response does not change. When the number of weights is even, the
center point of the filter falls midway between two weights, so a filter that is even about its center point
at zero frequency is odd about its center point at Nyquist, and vice versa.

Page 29 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

Table 5. Frequency Responses Shifted by Nyquist Frequency

Frequency response about Nyquist:

H (f +;j
2'TSAMP

1: Odd Order, Even Filter N-1 Still looks like a Type 1
2 . .
W, +2'Z(_1)I W ~cos(27r-i f 'TSAMP) about Nyquist frequency

Looks like a Type 4 about

N
.E 1w i (7 _1). . Nyquist frequency; odd
23 (-1) w;-sin (- (2i=1)- f T) ot Nyadt

2: Even Order, Even Filter

3: Odd Order, Odd Filter N-1 Still looks like a Type 3

2 _
2. 1) -w -sin(27-i-f-T about Nyquist frequency;
Z() ' (SAMP) odd about Nyquist

Looks like a Type 2 about

=1
N
_ .? “1Vow . (7 1), f. Nyquist frequency; even
2 Z(1) W, -cos(7-(2i—1)- f - Tpye) et Nyoae

4: Even Order, Odd Filter

Note that even order filters switch apparent types when the frequency responses are centered at
Nyquist instead of zero. These characteristics may force even or odd order for some filter requirements.
For example, a high-pass filter with even impulse response must have an odd number of weights
because the frequency response is always zero at Nyquist, which conflicts with the high-pass

requirement.

If the filter weights are even about the center point, as they are with lowpass, highpass and bandpass
filters or equalizers, the frequency response may be nonzero at Nyquist, which is the highest
unambiguous frequency and is half the sample rate.

Below we have examples of frequency responses for the four filter types:

e The frequency response of a Type 1, a high-pass with an odd number of weights is shown in
Figure 23,

e The frequency response of a Type 2, a low-pass with an even number of weights, is shown in
Figure 24,

e The frequency response of a Type 3, a differentiator with an odd number of weights, is shown in
Figure 25,

e The frequency response of a Type 4, a differential with an even number of weights is shown in
Figure 26, and, as a case with a peculiar issue,

e The frequency response of another Type 4, a Hilbert transformer with an even number of
weights is shown in Figure 27.

An interesting special case is the Hilbert transformer shown in Figure 27, which would ideally have a
discontinuity at zero frequency, so it’s low band edge cannot be zero.

Page 30 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File

Linear Response

Linear Response

-0.2

-05

The FIR Filter Design Program December 2015

Frequency Response over Three Times Sample Rate

0.s

=
=]

=]
=

0.z

-15

T 1
-05 0.5 1 15

0
f/(sample rate)

Figure 23. Type 1: High Pass, Odd Number of Weights

Frequency Response over Three Times Sample Rate

0.5

T 1
-05 o 0.5 1 15

f/(sample rate)

Figure 24. Type 2: High Pass with Even Number of Weights

Page 31 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File

Linear Response

The FIR Filter Design Program December 2015
Frequency Response over Three Times Sample Rate
0.6]
04 ',I
1 1 1
| | |
i | | |
| | |
0z ! 1 !
v | | |
g | |
=] | |
g
g o
£ 4
-
|
02 | |.
| | |
11 ! [
| | |
04 {4 | Iul
06
I T 1
15 -1 05 0 05 1 15
f/(sample rate)
Figure 25. Type 3: Differentiator with Odd Number of Weights (Not Recommended)
Frequency Response over Three Times Sample Rate
0.6 =
0.4 |
0.z
0
-0z
0.4
-06 -
T 1
-15 -1 05 0 05 1 15

f/(sample rate)

Figure 26. Type 4: Differentiator with Even Number of Weights

Page 32 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File

The FIR Filter Design Program

December 2015

Frequency Response over Three Times Sample Rate

0.5+

Linear Response
o

0.5

-13

T T T T T T T T T T T
-03 ul 05

f/(sample rate)

Figure 27. Type 4: Hilbert Transformer with Even Number of Weights, Transition at Zero Frequency

The issues with each type and the remedy or work-around for each situation is summarized in Table 6

below.
Table 6. Limitations and Solutions for Each Filter Type

Filter Issue Solution

Type 1 None Not Applicable

Type 2 Zero at Nyquist Use odd number of weights
(Type 1) for high-pass filters.
For bandpass, limit top
frequency of passband to just
short of Nyquist (NOTE 1).

Type 3 Zero at both zero frequency and | Limit upper end of differentiator

Nyquist and Hilbert transformer (NOTE

1).
Use even number of weights
(Type 4) in differentiators and
Hilbert transformers. (NOTE 2)

Type 4 Zero at zero frequency If appropriate, limit top

frequency of differentiator to
just under Nyquist to reduce the
required number of weights to
meet requirements. (NOTE 2)

Page 33 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

NOTE 1: The width of the gap between the top of the passband and Nyquist may drive the necessary
number of weights to meet requirements.

NOTE 2: In Hilbert transformers, always limit the lower limit of the band because the desired frequency
response of 1.0 has a sign change at zero frequency. A “don’t-care” region about zero frequency is
necessary for the design to succeed.

4.3 Ripple, Filter Deviation, and Error Weighting in the Stopband

The classical FIR filter design engine performs its calculation in the frequency domain, designing a
polynomial to achieve a Chebychev fit to the ideal or specified frequency response in the passbands and
stopbands. The polynomial is weighted according to a specified weighting function for each passband
and stopband, and the weighted deviations of the polynomial from the ideal frequency response are all
equal when the design is completed. The achieved ripple is inversely proportional to the weighting
applied.

In our program, the passband is always weighted by 1.0. In lowpass, highpass, and bandpass filters, the
stopband is weighted to achieve the specified stopband attenuation and the specified passband ripple
when the number of weights is exactly sufficient to achieve specifications; note that since the number of
weights is always an integer this is usually not possible exactly, so the next larger allowed number of
weights is used in the achieved designs. Thus the ripple and stopband achieved in the achieved designs
meets or slightly exceeds specifications.

In design procedures that fix the number of weights and varies another parameter, near-exact
conformance to the specifications is usually achieved. Performance as a function of any given
parameter is not always well-behaved or even monotonic, so small deviations that emerge during the
design process are handled in the program so that the result presented to the user always meets or
slightly exceeds specifications.

Internally the program designs a function that is equiripple everywhere bit that meets specifications for
varying ripple requirements by applying linear weights to the error in different bands. IN our program,
the passband ripple is always 1.0 and the stopband weighting is computed from the specifications and
applied internally by the program. A derivation for the equations for this weighting follows.

Nearly all practical applications have requirements for passband deviation specified as peak-to-peak

ripple specification. If the linear deviation is denoted by &, and the frequency response is denoted

by foasseann - the ripple is

Ry =20- loglO(Ry inear)

R _ fPASSBAND + 5PASS (47)
LINEAR — f 5
PASSBAND — “PAsSS
Note that the low-pass, high-pass, differentiator, and Hilbert transformer,
foasseann =1 (4.8)

Page 34 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015
but the equalizer and multi-band filters have user-defined passbands that may be any number from -1
to +1.

Also, note that equation (4.7) is valid only when fo,scaanp > Opass @nd is meaningful only if

fPASSBAND > §PASS : (49)

Since the differentiator, Hilbert transformer, and equalizer have no stopband, the generality of the
passband applies only to the classical inputs used when there is more than one passband or stopband.

The “average” filter response in the passband, in the log domain — e.g. on a plot in decibels, is the
geometric mean of the ripple peaks above and below the “average” filter response,

fGM = \/(fPASSBAND + 5PAss) (fPASSBAND - 5PAss) . (4.10)

The required stopband attenuation is attenuation with respect to fGM so that the stopband attenuation

on a decibels plot will be at the required level when compared to the mean between the ripple peaks in

decibels,
f
S — GM
LINEAR §STOP
5 (4.11)
S = 20-10g10(ﬂ]
fGM

Note that the program computes S as positive; the program takes the absolute value of user input
here to avoid confusion. Internally, S, \ear is @ large positive number, the reciprocal of the sidelobe

suppression level relative to the geometric mean of the passband ripple peaks.

Since the Chebychev ripple in each band is inversely proportional to the error weighting in that band,
the stopband weighting is

0
Wgrop = =25 (4.12)
STOP

Thus we have two nonlinear equations in two unknowns, driven by two specified inputs. The program
converts the input requirements in dB to linear,

R
—10 20
Rinear =10

_Sa
_ 20
Sinear =10

(4.13)

Page 35 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

and computes the linear domain deltas from equations (4.7), (4.10) and (4.11) and uses equation (4.12)
to compute the stopband weighting.

We compute the linear domain deltas as follows. Solving equation (4.7) for O, gives us

R -1
5PASS = RLINEAR 1' fPASSBAND (4.14)
Linear T

while from equations (4.10) and (4.11) we have

5 _ fGM
STOP — S
LINEAR
. (4.15)
_ \/ (fPASSBAND + §PASS)(fPASSBAND - 5PASS)
SLINEAR
We compute Jp,gq Using equation (4.14) and dgop Using equation (4.15), then we compute the
weighting W using (4.12).
For reference, the result from rolling up equations (4.12) through (4.15) for a passband objective
function of 1.0 is
SLINEAR '(RLINEAR - 1)
Worop [fPASSBAND = 1] = . (4.16)
2\/RLINEAR
Note that for very low passband ripple,
ln(IO)
WSTOP [fPASSBAND = 1] ~ 40 ’ RdB 'SLINEAR7 RdB <1. (4.17)

When the legacy inputs are used as in Section 3.4.1 and you want to use weightings that give you
specific passband ripple and stopband attenuation combinations, you can use equation (4.13) to get the
linear ratios and equation (4.16) to get the stopband weighting. Or, you can get the program to do the
computation using a dummy run: use a design for a low-pass using the desired ripple and stopband
requirements to get the stopband weighting from the legacy output as given in Figure 8, and use that for
the stopbands. Use the reciprocal of the passband objective function for the weight in each passband,

1
W g =— . (4.18)

fPASSBAN D

5 The Source Code
The source code is in Fortran 2003, e.g. the added features of later versions of Fortran (complex
functions, quad precision, parallel threads and cluster support, etc.) are not needed here. The GUI

Page 36 of 37 Copyright 2015 by James K Beard, all rights reserved.

ReadMe File The FIR Filter Design Program December 2015

portion is compiler-specific to Absoft Fortran compilers (http://absoft.com) which are available for
Windows, Mac and Linux environments. My intention is to eventually release the source code under a

BSD or GPL license. Issues that must be resolved prior to release include, but are not limited to, the
following:

e The program is, at this point, personal working code, with commented-out dead ends and
previous versions of some algorithms, some duplicate code, etc. — definitely is in a not-ready-
for-prime-time state.

e The FIR design engine was adapted from the original Parks, McClellan and Rabiner program as
published in an IEEE journal and in the book by Rabiner & Gold published by Prentice-Hall. As
such, the authors, the IEEE, or Prentice-Hall may have some rights to the code for the engine.

e The user interface, using pop-up dialogues, X-Y plots, and a text window, are in compiler-
dependent code. Although the user interface is all in a specific, single module, and the earliest
versions used the command line and GNU PIPlot, and an embryonic command-line interface
does exist in the source code that may be included using conditional compilation, the command-
line user interface has not been maintained past the first revision. To retain current
functionality, an entirely new command-line user interface module is required.

When these and any other issues that present themselves are resolved, | will release the source code on
my web site or through GNU or Sourceforge.

My current planning is to retain the Absoft AWE user interface and not support a command-line
interface myself. Dr. John McClellan is aware of this program and my intent to eventually release the
source code, and | have sent prior versions of the source code to him, and | do not expect any objections
from him or the other authors of the IEEE papers and Prentice-Hall book. The age of the IEEE and
Prentice-Hall publications and the degree of revision necessary for structuring this program will probably
make satisfaction of IEEE and Prentice-Hall interests a matter of proper attribution. This leaves a few e-
mails and code clean-up with a clean compile using GNU gfortran (except for the Absoft-specific GUI
module calls) as the primary considerations.

Page 37 of 37 Copyright 2015 by James K Beard, all rights reserved.

